3.302 \(\int \frac{A+B \log (e (a+b x)^n (c+d x)^{-n})}{(g+h x)^5} \, dx\)

Optimal. Leaf size=389 \[ -\frac{B n (b c-a d) \left (a^2 d^2 h^2-a b d h (3 d g-c h)+b^2 \left (c^2 h^2-3 c d g h+3 d^2 g^2\right )\right )}{4 (g+h x) (b g-a h)^3 (d g-c h)^3}-\frac{B n (b c-a d) \log (g+h x) (-a d h-b c h+2 b d g) \left (-a^2 d^2 h^2+2 a b d^2 g h+b^2 \left (-\left (c^2 h^2-2 c d g h+2 d^2 g^2\right )\right )\right )}{4 (b g-a h)^4 (d g-c h)^4}-\frac{B \log \left (e (a+b x)^n (c+d x)^{-n}\right )+A}{4 h (g+h x)^4}+\frac{b^4 B n \log (a+b x)}{4 h (b g-a h)^4}-\frac{B n (b c-a d) (-a d h-b c h+2 b d g)}{8 (g+h x)^2 (b g-a h)^2 (d g-c h)^2}-\frac{B n (b c-a d)}{12 (g+h x)^3 (b g-a h) (d g-c h)}-\frac{B d^4 n \log (c+d x)}{4 h (d g-c h)^4} \]

[Out]

-(B*(b*c - a*d)*n)/(12*(b*g - a*h)*(d*g - c*h)*(g + h*x)^3) - (B*(b*c - a*d)*(2*b*d*g - b*c*h - a*d*h)*n)/(8*(
b*g - a*h)^2*(d*g - c*h)^2*(g + h*x)^2) - (B*(b*c - a*d)*(a^2*d^2*h^2 - a*b*d*h*(3*d*g - c*h) + b^2*(3*d^2*g^2
 - 3*c*d*g*h + c^2*h^2))*n)/(4*(b*g - a*h)^3*(d*g - c*h)^3*(g + h*x)) + (b^4*B*n*Log[a + b*x])/(4*h*(b*g - a*h
)^4) - (B*d^4*n*Log[c + d*x])/(4*h*(d*g - c*h)^4) - (A + B*Log[(e*(a + b*x)^n)/(c + d*x)^n])/(4*h*(g + h*x)^4)
 - (B*(b*c - a*d)*(2*b*d*g - b*c*h - a*d*h)*(2*a*b*d^2*g*h - a^2*d^2*h^2 - b^2*(2*d^2*g^2 - 2*c*d*g*h + c^2*h^
2))*n*Log[g + h*x])/(4*(b*g - a*h)^4*(d*g - c*h)^4)

________________________________________________________________________________________

Rubi [A]  time = 0.820968, antiderivative size = 401, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 3, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.097, Rules used = {6742, 2492, 72} \[ -\frac{B n (b c-a d) \left (a^2 d^2 h^2-a b d h (3 d g-c h)+b^2 \left (c^2 h^2-3 c d g h+3 d^2 g^2\right )\right )}{4 (g+h x) (b g-a h)^3 (d g-c h)^3}-\frac{B n (b c-a d) \log (g+h x) (-a d h-b c h+2 b d g) \left (-a^2 d^2 h^2+2 a b d^2 g h+b^2 \left (-\left (c^2 h^2-2 c d g h+2 d^2 g^2\right )\right )\right )}{4 (b g-a h)^4 (d g-c h)^4}+\frac{b^4 B n \log (a+b x)}{4 h (b g-a h)^4}-\frac{B \log \left (e (a+b x)^n (c+d x)^{-n}\right )}{4 h (g+h x)^4}-\frac{B n (b c-a d) (-a d h-b c h+2 b d g)}{8 (g+h x)^2 (b g-a h)^2 (d g-c h)^2}-\frac{B n (b c-a d)}{12 (g+h x)^3 (b g-a h) (d g-c h)}-\frac{A}{4 h (g+h x)^4}-\frac{B d^4 n \log (c+d x)}{4 h (d g-c h)^4} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Log[(e*(a + b*x)^n)/(c + d*x)^n])/(g + h*x)^5,x]

[Out]

-A/(4*h*(g + h*x)^4) - (B*(b*c - a*d)*n)/(12*(b*g - a*h)*(d*g - c*h)*(g + h*x)^3) - (B*(b*c - a*d)*(2*b*d*g -
b*c*h - a*d*h)*n)/(8*(b*g - a*h)^2*(d*g - c*h)^2*(g + h*x)^2) - (B*(b*c - a*d)*(a^2*d^2*h^2 - a*b*d*h*(3*d*g -
 c*h) + b^2*(3*d^2*g^2 - 3*c*d*g*h + c^2*h^2))*n)/(4*(b*g - a*h)^3*(d*g - c*h)^3*(g + h*x)) + (b^4*B*n*Log[a +
 b*x])/(4*h*(b*g - a*h)^4) - (B*d^4*n*Log[c + d*x])/(4*h*(d*g - c*h)^4) - (B*Log[(e*(a + b*x)^n)/(c + d*x)^n])
/(4*h*(g + h*x)^4) - (B*(b*c - a*d)*(2*b*d*g - b*c*h - a*d*h)*(2*a*b*d^2*g*h - a^2*d^2*h^2 - b^2*(2*d^2*g^2 -
2*c*d*g*h + c^2*h^2))*n*Log[g + h*x])/(4*(b*g - a*h)^4*(d*g - c*h)^4)

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 2492

Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.)*((g_.) + (h_.)*(x_))^
(m_.), x_Symbol] :> Simp[((g + h*x)^(m + 1)*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s)/(h*(m + 1)), x] - Dist[(p*
r*s*(b*c - a*d))/(h*(m + 1)), Int[((g + h*x)^(m + 1)*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1))/((a + b*x)*
(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && EqQ[p + q, 0]
&& IGtQ[s, 0] && NeQ[m, -1]

Rule 72

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Int[ExpandIntegrand[(
e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[p]

Rubi steps

\begin{align*} \int \frac{A+B \log \left (e (a+b x)^n (c+d x)^{-n}\right )}{(g+h x)^5} \, dx &=\int \left (\frac{A}{(g+h x)^5}+\frac{B \log \left (e (a+b x)^n (c+d x)^{-n}\right )}{(g+h x)^5}\right ) \, dx\\ &=-\frac{A}{4 h (g+h x)^4}+B \int \frac{\log \left (e (a+b x)^n (c+d x)^{-n}\right )}{(g+h x)^5} \, dx\\ &=-\frac{A}{4 h (g+h x)^4}-\frac{B \log \left (e (a+b x)^n (c+d x)^{-n}\right )}{4 h (g+h x)^4}+\frac{(B (b c-a d) n) \int \frac{1}{(a+b x) (c+d x) (g+h x)^4} \, dx}{4 h}\\ &=-\frac{A}{4 h (g+h x)^4}-\frac{B \log \left (e (a+b x)^n (c+d x)^{-n}\right )}{4 h (g+h x)^4}+\frac{(B (b c-a d) n) \int \left (\frac{b^5}{(b c-a d) (b g-a h)^4 (a+b x)}-\frac{d^5}{(b c-a d) (-d g+c h)^4 (c+d x)}+\frac{h^2}{(b g-a h) (d g-c h) (g+h x)^4}-\frac{h^2 (-2 b d g+b c h+a d h)}{(b g-a h)^2 (d g-c h)^2 (g+h x)^3}+\frac{h^2 \left (a^2 d^2 h^2-a b d h (3 d g-c h)+b^2 \left (3 d^2 g^2-3 c d g h+c^2 h^2\right )\right )}{(b g-a h)^3 (d g-c h)^3 (g+h x)^2}+\frac{h^2 (2 b d g-b c h-a d h) \left (2 b^2 d^2 g^2-2 b^2 c d g h-2 a b d^2 g h+b^2 c^2 h^2+a^2 d^2 h^2\right )}{(b g-a h)^4 (d g-c h)^4 (g+h x)}\right ) \, dx}{4 h}\\ &=-\frac{A}{4 h (g+h x)^4}-\frac{B (b c-a d) n}{12 (b g-a h) (d g-c h) (g+h x)^3}-\frac{B (b c-a d) (2 b d g-b c h-a d h) n}{8 (b g-a h)^2 (d g-c h)^2 (g+h x)^2}-\frac{B (b c-a d) \left (a^2 d^2 h^2-a b d h (3 d g-c h)+b^2 \left (3 d^2 g^2-3 c d g h+c^2 h^2\right )\right ) n}{4 (b g-a h)^3 (d g-c h)^3 (g+h x)}+\frac{b^4 B n \log (a+b x)}{4 h (b g-a h)^4}-\frac{B d^4 n \log (c+d x)}{4 h (d g-c h)^4}-\frac{B \log \left (e (a+b x)^n (c+d x)^{-n}\right )}{4 h (g+h x)^4}-\frac{B (b c-a d) (2 b d g-b c h-a d h) \left (2 a b d^2 g h-a^2 d^2 h^2-b^2 \left (2 d^2 g^2-2 c d g h+c^2 h^2\right )\right ) n \log (g+h x)}{4 (b g-a h)^4 (d g-c h)^4}\\ \end{align*}

Mathematica [A]  time = 1.47082, size = 366, normalized size = 0.94 \[ -\frac{-B n (b c-a d) \left (-\frac{h \left (a^2 d^2 h^2+a b d h (c h-3 d g)+b^2 \left (c^2 h^2-3 c d g h+3 d^2 g^2\right )\right )}{(g+h x) (b g-a h)^3 (d g-c h)^3}-\frac{h \log (g+h x) (a d h+b c h-2 b d g) \left (a^2 d^2 h^2-2 a b d^2 g h+b^2 \left (c^2 h^2-2 c d g h+2 d^2 g^2\right )\right )}{(b g-a h)^4 (d g-c h)^4}+\frac{b^4 \log (a+b x)}{(b c-a d) (b g-a h)^4}-\frac{d^4 \log (c+d x)}{(b c-a d) (d g-c h)^4}+\frac{h (a d h+b c h-2 b d g)}{2 (g+h x)^2 (b g-a h)^2 (d g-c h)^2}-\frac{h}{3 (g+h x)^3 (b g-a h) (d g-c h)}\right )+\frac{B \log \left (e (a+b x)^n (c+d x)^{-n}\right )}{(g+h x)^4}+\frac{A}{(g+h x)^4}}{4 h} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Log[(e*(a + b*x)^n)/(c + d*x)^n])/(g + h*x)^5,x]

[Out]

-(A/(g + h*x)^4 + (B*Log[(e*(a + b*x)^n)/(c + d*x)^n])/(g + h*x)^4 - B*(b*c - a*d)*n*(-h/(3*(b*g - a*h)*(d*g -
 c*h)*(g + h*x)^3) + (h*(-2*b*d*g + b*c*h + a*d*h))/(2*(b*g - a*h)^2*(d*g - c*h)^2*(g + h*x)^2) - (h*(a^2*d^2*
h^2 + a*b*d*h*(-3*d*g + c*h) + b^2*(3*d^2*g^2 - 3*c*d*g*h + c^2*h^2)))/((b*g - a*h)^3*(d*g - c*h)^3*(g + h*x))
 + (b^4*Log[a + b*x])/((b*c - a*d)*(b*g - a*h)^4) - (d^4*Log[c + d*x])/((b*c - a*d)*(d*g - c*h)^4) - (h*(-2*b*
d*g + b*c*h + a*d*h)*(-2*a*b*d^2*g*h + a^2*d^2*h^2 + b^2*(2*d^2*g^2 - 2*c*d*g*h + c^2*h^2))*Log[g + h*x])/((b*
g - a*h)^4*(d*g - c*h)^4)))/(4*h)

________________________________________________________________________________________

Maple [C]  time = 1.286, size = 16077, normalized size = 41.3 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*ln(e*(b*x+a)^n/((d*x+c)^n)))/(h*x+g)^5,x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [B]  time = 2.13105, size = 2581, normalized size = 6.63 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*(b*x+a)^n/((d*x+c)^n)))/(h*x+g)^5,x, algorithm="maxima")

[Out]

1/24*(6*b^4*e*n*log(b*x + a)/(b^4*g^4*h - 4*a*b^3*g^3*h^2 + 6*a^2*b^2*g^2*h^3 - 4*a^3*b*g*h^4 + a^4*h^5) - 6*d
^4*e*n*log(d*x + c)/(d^4*g^4*h - 4*c*d^3*g^3*h^2 + 6*c^2*d^2*g^2*h^3 - 4*c^3*d*g*h^4 + c^4*h^5) - 6*(4*a*b^3*d
^4*e*g^3*n - 6*a^2*b^2*d^4*e*g^2*h*n + 4*a^3*b*d^4*e*g*h^2*n - a^4*d^4*e*h^3*n - (4*c*d^3*e*g^3*n - 6*c^2*d^2*
e*g^2*h*n + 4*c^3*d*e*g*h^2*n - c^4*e*h^3*n)*b^4)*log(h*x + g)/((d^4*g^4*h^4 - 4*c*d^3*g^3*h^5 + 6*c^2*d^2*g^2
*h^6 - 4*c^3*d*g*h^7 + c^4*h^8)*a^4 - 4*(d^4*g^5*h^3 - 4*c*d^3*g^4*h^4 + 6*c^2*d^2*g^3*h^5 - 4*c^3*d*g^2*h^6 +
 c^4*g*h^7)*a^3*b + 6*(d^4*g^6*h^2 - 4*c*d^3*g^5*h^3 + 6*c^2*d^2*g^4*h^4 - 4*c^3*d*g^3*h^5 + c^4*g^2*h^6)*a^2*
b^2 - 4*(d^4*g^7*h - 4*c*d^3*g^6*h^2 + 6*c^2*d^2*g^5*h^3 - 4*c^3*d*g^4*h^4 + c^4*g^3*h^5)*a*b^3 + (d^4*g^8 - 4
*c*d^3*g^7*h + 6*c^2*d^2*g^6*h^2 - 4*c^3*d*g^5*h^3 + c^4*g^4*h^4)*b^4) - ((11*d^3*e*g^2*h^2*n - 7*c*d^2*e*g*h^
3*n + 2*c^2*d*e*h^4*n)*a^3 - (31*d^3*e*g^3*h*n - 15*c*d^2*e*g^2*h^2*n + 2*c^3*e*h^4*n)*a^2*b + (26*d^3*e*g^4*n
 - 15*c^2*d*e*g^2*h^2*n + 7*c^3*e*g*h^3*n)*a*b^2 - (26*c*d^2*e*g^4*n - 31*c^2*d*e*g^3*h*n + 11*c^3*e*g^2*h^2*n
)*b^3 + 6*(3*a*b^2*d^3*e*g^2*h^2*n - 3*a^2*b*d^3*e*g*h^3*n + a^3*d^3*e*h^4*n - (3*c*d^2*e*g^2*h^2*n - 3*c^2*d*
e*g*h^3*n + c^3*e*h^4*n)*b^3)*x^2 + 3*((5*d^3*e*g*h^3*n - c*d^2*e*h^4*n)*a^3 - 3*(5*d^3*e*g^2*h^2*n - c*d^2*e*
g*h^3*n)*a^2*b + (14*d^3*e*g^3*h*n - 3*c^2*d*e*g*h^3*n + c^3*e*h^4*n)*a*b^2 - (14*c*d^2*e*g^3*h*n - 15*c^2*d*e
*g^2*h^2*n + 5*c^3*e*g*h^3*n)*b^3)*x)/((d^3*g^6*h^3 - 3*c*d^2*g^5*h^4 + 3*c^2*d*g^4*h^5 - c^3*g^3*h^6)*a^3 - 3
*(d^3*g^7*h^2 - 3*c*d^2*g^6*h^3 + 3*c^2*d*g^5*h^4 - c^3*g^4*h^5)*a^2*b + 3*(d^3*g^8*h - 3*c*d^2*g^7*h^2 + 3*c^
2*d*g^6*h^3 - c^3*g^5*h^4)*a*b^2 - (d^3*g^9 - 3*c*d^2*g^8*h + 3*c^2*d*g^7*h^2 - c^3*g^6*h^3)*b^3 + ((d^3*g^3*h
^6 - 3*c*d^2*g^2*h^7 + 3*c^2*d*g*h^8 - c^3*h^9)*a^3 - 3*(d^3*g^4*h^5 - 3*c*d^2*g^3*h^6 + 3*c^2*d*g^2*h^7 - c^3
*g*h^8)*a^2*b + 3*(d^3*g^5*h^4 - 3*c*d^2*g^4*h^5 + 3*c^2*d*g^3*h^6 - c^3*g^2*h^7)*a*b^2 - (d^3*g^6*h^3 - 3*c*d
^2*g^5*h^4 + 3*c^2*d*g^4*h^5 - c^3*g^3*h^6)*b^3)*x^3 + 3*((d^3*g^4*h^5 - 3*c*d^2*g^3*h^6 + 3*c^2*d*g^2*h^7 - c
^3*g*h^8)*a^3 - 3*(d^3*g^5*h^4 - 3*c*d^2*g^4*h^5 + 3*c^2*d*g^3*h^6 - c^3*g^2*h^7)*a^2*b + 3*(d^3*g^6*h^3 - 3*c
*d^2*g^5*h^4 + 3*c^2*d*g^4*h^5 - c^3*g^3*h^6)*a*b^2 - (d^3*g^7*h^2 - 3*c*d^2*g^6*h^3 + 3*c^2*d*g^5*h^4 - c^3*g
^4*h^5)*b^3)*x^2 + 3*((d^3*g^5*h^4 - 3*c*d^2*g^4*h^5 + 3*c^2*d*g^3*h^6 - c^3*g^2*h^7)*a^3 - 3*(d^3*g^6*h^3 - 3
*c*d^2*g^5*h^4 + 3*c^2*d*g^4*h^5 - c^3*g^3*h^6)*a^2*b + 3*(d^3*g^7*h^2 - 3*c*d^2*g^6*h^3 + 3*c^2*d*g^5*h^4 - c
^3*g^4*h^5)*a*b^2 - (d^3*g^8*h - 3*c*d^2*g^7*h^2 + 3*c^2*d*g^6*h^3 - c^3*g^5*h^4)*b^3)*x))*B/e - 1/4*B*log((b*
x + a)^n*e/(d*x + c)^n)/(h^5*x^4 + 4*g*h^4*x^3 + 6*g^2*h^3*x^2 + 4*g^3*h^2*x + g^4*h) - 1/4*A/(h^5*x^4 + 4*g*h
^4*x^3 + 6*g^2*h^3*x^2 + 4*g^3*h^2*x + g^4*h)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*(b*x+a)^n/((d*x+c)^n)))/(h*x+g)^5,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*ln(e*(b*x+a)**n/((d*x+c)**n)))/(h*x+g)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 14.5972, size = 5925, normalized size = 15.23 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*log(e*(b*x+a)^n/((d*x+c)^n)))/(h*x+g)^5,x, algorithm="giac")

[Out]

-1/4*B*n*log(b*x + a)/(h^5*x^4 + 4*g*h^4*x^3 + 6*g^2*h^3*x^2 + 4*g^3*h^2*x + g^4*h) + 1/4*B*n*log(d*x + c)/(h^
5*x^4 + 4*g*h^4*x^3 + 6*g^2*h^3*x^2 + 4*g^3*h^2*x + g^4*h) + 1/4*(4*B*b^4*c*d^3*g^3*n - 4*B*a*b^3*d^4*g^3*n -
6*B*b^4*c^2*d^2*g^2*h*n + 6*B*a^2*b^2*d^4*g^2*h*n + 4*B*b^4*c^3*d*g*h^2*n - 4*B*a^3*b*d^4*g*h^2*n - B*b^4*c^4*
h^3*n + B*a^4*d^4*h^3*n)*log(h*x + g)/(b^4*d^4*g^8 - 4*b^4*c*d^3*g^7*h - 4*a*b^3*d^4*g^7*h + 6*b^4*c^2*d^2*g^6
*h^2 + 16*a*b^3*c*d^3*g^6*h^2 + 6*a^2*b^2*d^4*g^6*h^2 - 4*b^4*c^3*d*g^5*h^3 - 24*a*b^3*c^2*d^2*g^5*h^3 - 24*a^
2*b^2*c*d^3*g^5*h^3 - 4*a^3*b*d^4*g^5*h^3 + b^4*c^4*g^4*h^4 + 16*a*b^3*c^3*d*g^4*h^4 + 36*a^2*b^2*c^2*d^2*g^4*
h^4 + 16*a^3*b*c*d^3*g^4*h^4 + a^4*d^4*g^4*h^4 - 4*a*b^3*c^4*g^3*h^5 - 24*a^2*b^2*c^3*d*g^3*h^5 - 24*a^3*b*c^2
*d^2*g^3*h^5 - 4*a^4*c*d^3*g^3*h^5 + 6*a^2*b^2*c^4*g^2*h^6 + 16*a^3*b*c^3*d*g^2*h^6 + 6*a^4*c^2*d^2*g^2*h^6 -
4*a^3*b*c^4*g*h^7 - 4*a^4*c^3*d*g*h^7 + a^4*c^4*h^8) - 1/8*(4*B*b^4*c*d^3*g^3*n - 4*B*a*b^3*d^4*g^3*n - 6*B*b^
4*c^2*d^2*g^2*h*n + 6*B*a^2*b^2*d^4*g^2*h*n + 4*B*b^4*c^3*d*g*h^2*n - 4*B*a^3*b*d^4*g*h^2*n - B*b^4*c^4*h^3*n
+ B*a^4*d^4*h^3*n)*log(abs(b*d*x^2 + b*c*x + a*d*x + a*c))/(b^4*d^4*g^8 - 4*b^4*c*d^3*g^7*h - 4*a*b^3*d^4*g^7*
h + 6*b^4*c^2*d^2*g^6*h^2 + 16*a*b^3*c*d^3*g^6*h^2 + 6*a^2*b^2*d^4*g^6*h^2 - 4*b^4*c^3*d*g^5*h^3 - 24*a*b^3*c^
2*d^2*g^5*h^3 - 24*a^2*b^2*c*d^3*g^5*h^3 - 4*a^3*b*d^4*g^5*h^3 + b^4*c^4*g^4*h^4 + 16*a*b^3*c^3*d*g^4*h^4 + 36
*a^2*b^2*c^2*d^2*g^4*h^4 + 16*a^3*b*c*d^3*g^4*h^4 + a^4*d^4*g^4*h^4 - 4*a*b^3*c^4*g^3*h^5 - 24*a^2*b^2*c^3*d*g
^3*h^5 - 24*a^3*b*c^2*d^2*g^3*h^5 - 4*a^4*c*d^3*g^3*h^5 + 6*a^2*b^2*c^4*g^2*h^6 + 16*a^3*b*c^3*d*g^2*h^6 + 6*a
^4*c^2*d^2*g^2*h^6 - 4*a^3*b*c^4*g*h^7 - 4*a^4*c^3*d*g*h^7 + a^4*c^4*h^8) - 1/24*(18*B*b^3*c*d^2*g^2*h^4*n*x^3
 - 18*B*a*b^2*d^3*g^2*h^4*n*x^3 - 18*B*b^3*c^2*d*g*h^5*n*x^3 + 18*B*a^2*b*d^3*g*h^5*n*x^3 + 6*B*b^3*c^3*h^6*n*
x^3 - 6*B*a^3*d^3*h^6*n*x^3 + 60*B*b^3*c*d^2*g^3*h^3*n*x^2 - 60*B*a*b^2*d^3*g^3*h^3*n*x^2 - 63*B*b^3*c^2*d*g^2
*h^4*n*x^2 + 63*B*a^2*b*d^3*g^2*h^4*n*x^2 + 21*B*b^3*c^3*g*h^5*n*x^2 + 9*B*a*b^2*c^2*d*g*h^5*n*x^2 - 9*B*a^2*b
*c*d^2*g*h^5*n*x^2 - 21*B*a^3*d^3*g*h^5*n*x^2 - 3*B*a*b^2*c^3*h^6*n*x^2 + 3*B*a^3*c*d^2*h^6*n*x^2 + 68*B*b^3*c
*d^2*g^4*h^2*n*x - 68*B*a*b^2*d^3*g^4*h^2*n*x - 76*B*b^3*c^2*d*g^3*h^3*n*x + 76*B*a^2*b*d^3*g^3*h^3*n*x + 26*B
*b^3*c^3*g^2*h^4*n*x + 24*B*a*b^2*c^2*d*g^2*h^4*n*x - 24*B*a^2*b*c*d^2*g^2*h^4*n*x - 26*B*a^3*d^3*g^2*h^4*n*x
- 10*B*a*b^2*c^3*g*h^5*n*x + 10*B*a^3*c*d^2*g*h^5*n*x + 2*B*a^2*b*c^3*h^6*n*x - 2*B*a^3*c^2*d*h^6*n*x + 26*B*b
^3*c*d^2*g^5*h*n - 26*B*a*b^2*d^3*g^5*h*n - 31*B*b^3*c^2*d*g^4*h^2*n + 31*B*a^2*b*d^3*g^4*h^2*n + 11*B*b^3*c^3
*g^3*h^3*n + 15*B*a*b^2*c^2*d*g^3*h^3*n - 15*B*a^2*b*c*d^2*g^3*h^3*n - 11*B*a^3*d^3*g^3*h^3*n - 7*B*a*b^2*c^3*
g^2*h^4*n + 7*B*a^3*c*d^2*g^2*h^4*n + 2*B*a^2*b*c^3*g*h^5*n - 2*B*a^3*c^2*d*g*h^5*n + 6*A*b^3*d^3*g^6 + 6*B*b^
3*d^3*g^6 - 18*A*b^3*c*d^2*g^5*h - 18*B*b^3*c*d^2*g^5*h - 18*A*a*b^2*d^3*g^5*h - 18*B*a*b^2*d^3*g^5*h + 18*A*b
^3*c^2*d*g^4*h^2 + 18*B*b^3*c^2*d*g^4*h^2 + 54*A*a*b^2*c*d^2*g^4*h^2 + 54*B*a*b^2*c*d^2*g^4*h^2 + 18*A*a^2*b*d
^3*g^4*h^2 + 18*B*a^2*b*d^3*g^4*h^2 - 6*A*b^3*c^3*g^3*h^3 - 6*B*b^3*c^3*g^3*h^3 - 54*A*a*b^2*c^2*d*g^3*h^3 - 5
4*B*a*b^2*c^2*d*g^3*h^3 - 54*A*a^2*b*c*d^2*g^3*h^3 - 54*B*a^2*b*c*d^2*g^3*h^3 - 6*A*a^3*d^3*g^3*h^3 - 6*B*a^3*
d^3*g^3*h^3 + 18*A*a*b^2*c^3*g^2*h^4 + 18*B*a*b^2*c^3*g^2*h^4 + 54*A*a^2*b*c^2*d*g^2*h^4 + 54*B*a^2*b*c^2*d*g^
2*h^4 + 18*A*a^3*c*d^2*g^2*h^4 + 18*B*a^3*c*d^2*g^2*h^4 - 18*A*a^2*b*c^3*g*h^5 - 18*B*a^2*b*c^3*g*h^5 - 18*A*a
^3*c^2*d*g*h^5 - 18*B*a^3*c^2*d*g*h^5 + 6*A*a^3*c^3*h^6 + 6*B*a^3*c^3*h^6)/(b^3*d^3*g^6*h^5*x^4 - 3*b^3*c*d^2*
g^5*h^6*x^4 - 3*a*b^2*d^3*g^5*h^6*x^4 + 3*b^3*c^2*d*g^4*h^7*x^4 + 9*a*b^2*c*d^2*g^4*h^7*x^4 + 3*a^2*b*d^3*g^4*
h^7*x^4 - b^3*c^3*g^3*h^8*x^4 - 9*a*b^2*c^2*d*g^3*h^8*x^4 - 9*a^2*b*c*d^2*g^3*h^8*x^4 - a^3*d^3*g^3*h^8*x^4 +
3*a*b^2*c^3*g^2*h^9*x^4 + 9*a^2*b*c^2*d*g^2*h^9*x^4 + 3*a^3*c*d^2*g^2*h^9*x^4 - 3*a^2*b*c^3*g*h^10*x^4 - 3*a^3
*c^2*d*g*h^10*x^4 + a^3*c^3*h^11*x^4 + 4*b^3*d^3*g^7*h^4*x^3 - 12*b^3*c*d^2*g^6*h^5*x^3 - 12*a*b^2*d^3*g^6*h^5
*x^3 + 12*b^3*c^2*d*g^5*h^6*x^3 + 36*a*b^2*c*d^2*g^5*h^6*x^3 + 12*a^2*b*d^3*g^5*h^6*x^3 - 4*b^3*c^3*g^4*h^7*x^
3 - 36*a*b^2*c^2*d*g^4*h^7*x^3 - 36*a^2*b*c*d^2*g^4*h^7*x^3 - 4*a^3*d^3*g^4*h^7*x^3 + 12*a*b^2*c^3*g^3*h^8*x^3
 + 36*a^2*b*c^2*d*g^3*h^8*x^3 + 12*a^3*c*d^2*g^3*h^8*x^3 - 12*a^2*b*c^3*g^2*h^9*x^3 - 12*a^3*c^2*d*g^2*h^9*x^3
 + 4*a^3*c^3*g*h^10*x^3 + 6*b^3*d^3*g^8*h^3*x^2 - 18*b^3*c*d^2*g^7*h^4*x^2 - 18*a*b^2*d^3*g^7*h^4*x^2 + 18*b^3
*c^2*d*g^6*h^5*x^2 + 54*a*b^2*c*d^2*g^6*h^5*x^2 + 18*a^2*b*d^3*g^6*h^5*x^2 - 6*b^3*c^3*g^5*h^6*x^2 - 54*a*b^2*
c^2*d*g^5*h^6*x^2 - 54*a^2*b*c*d^2*g^5*h^6*x^2 - 6*a^3*d^3*g^5*h^6*x^2 + 18*a*b^2*c^3*g^4*h^7*x^2 + 54*a^2*b*c
^2*d*g^4*h^7*x^2 + 18*a^3*c*d^2*g^4*h^7*x^2 - 18*a^2*b*c^3*g^3*h^8*x^2 - 18*a^3*c^2*d*g^3*h^8*x^2 + 6*a^3*c^3*
g^2*h^9*x^2 + 4*b^3*d^3*g^9*h^2*x - 12*b^3*c*d^2*g^8*h^3*x - 12*a*b^2*d^3*g^8*h^3*x + 12*b^3*c^2*d*g^7*h^4*x +
 36*a*b^2*c*d^2*g^7*h^4*x + 12*a^2*b*d^3*g^7*h^4*x - 4*b^3*c^3*g^6*h^5*x - 36*a*b^2*c^2*d*g^6*h^5*x - 36*a^2*b
*c*d^2*g^6*h^5*x - 4*a^3*d^3*g^6*h^5*x + 12*a*b^2*c^3*g^5*h^6*x + 36*a^2*b*c^2*d*g^5*h^6*x + 12*a^3*c*d^2*g^5*
h^6*x - 12*a^2*b*c^3*g^4*h^7*x - 12*a^3*c^2*d*g^4*h^7*x + 4*a^3*c^3*g^3*h^8*x + b^3*d^3*g^10*h - 3*b^3*c*d^2*g
^9*h^2 - 3*a*b^2*d^3*g^9*h^2 + 3*b^3*c^2*d*g^8*h^3 + 9*a*b^2*c*d^2*g^8*h^3 + 3*a^2*b*d^3*g^8*h^3 - b^3*c^3*g^7
*h^4 - 9*a*b^2*c^2*d*g^7*h^4 - 9*a^2*b*c*d^2*g^7*h^4 - a^3*d^3*g^7*h^4 + 3*a*b^2*c^3*g^6*h^5 + 9*a^2*b*c^2*d*g
^6*h^5 + 3*a^3*c*d^2*g^6*h^5 - 3*a^2*b*c^3*g^5*h^6 - 3*a^3*c^2*d*g^5*h^6 + a^3*c^3*g^4*h^7) + 1/8*(2*B*b^5*c*d
^4*g^4*n - 2*B*a*b^4*d^5*g^4*n - 4*B*b^5*c^2*d^3*g^3*h*n + 4*B*a^2*b^3*d^5*g^3*h*n + 6*B*b^5*c^3*d^2*g^2*h^2*n
 - 6*B*a*b^4*c^2*d^3*g^2*h^2*n + 6*B*a^2*b^3*c*d^4*g^2*h^2*n - 6*B*a^3*b^2*d^5*g^2*h^2*n - 4*B*b^5*c^4*d*g*h^3
*n + 4*B*a*b^4*c^3*d^2*g*h^3*n - 4*B*a^3*b^2*c*d^4*g*h^3*n + 4*B*a^4*b*d^5*g*h^3*n + B*b^5*c^5*h^4*n - B*a*b^4
*c^4*d*h^4*n + B*a^4*b*c*d^4*h^4*n - B*a^5*d^5*h^4*n)*log(abs((2*b*d*x + b*c + a*d - abs(-b*c + a*d))/(2*b*d*x
 + b*c + a*d + abs(-b*c + a*d))))/((b^4*d^4*g^8*h - 4*b^4*c*d^3*g^7*h^2 - 4*a*b^3*d^4*g^7*h^2 + 6*b^4*c^2*d^2*
g^6*h^3 + 16*a*b^3*c*d^3*g^6*h^3 + 6*a^2*b^2*d^4*g^6*h^3 - 4*b^4*c^3*d*g^5*h^4 - 24*a*b^3*c^2*d^2*g^5*h^4 - 24
*a^2*b^2*c*d^3*g^5*h^4 - 4*a^3*b*d^4*g^5*h^4 + b^4*c^4*g^4*h^5 + 16*a*b^3*c^3*d*g^4*h^5 + 36*a^2*b^2*c^2*d^2*g
^4*h^5 + 16*a^3*b*c*d^3*g^4*h^5 + a^4*d^4*g^4*h^5 - 4*a*b^3*c^4*g^3*h^6 - 24*a^2*b^2*c^3*d*g^3*h^6 - 24*a^3*b*
c^2*d^2*g^3*h^6 - 4*a^4*c*d^3*g^3*h^6 + 6*a^2*b^2*c^4*g^2*h^7 + 16*a^3*b*c^3*d*g^2*h^7 + 6*a^4*c^2*d^2*g^2*h^7
 - 4*a^3*b*c^4*g*h^8 - 4*a^4*c^3*d*g*h^8 + a^4*c^4*h^9)*abs(-b*c + a*d))